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In this paper we extend"and generaiize ,to the multivariate set-up .,'-’---1
; B¢
? our earlier investigations related to expected remaining 1ife functions .;:;Z;-‘fjj
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¢ et
} and general hazard measures including representations and stability .',-::‘.-:.'_j
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. Advances in Applied Probability 12 (1980).) R
- ey
" Keywords and Phrases: Expected 1ife function, hazard measure, reliability %,:;‘3
¢ :‘v‘h'.‘-‘l
y representation and stability theorems, identifiability, multivariate prob- ":.r‘:'::
)
S ability distributions. hota's
o A
! AMS 1979 subject classification: 62H05, 62N05. =
. .
:: =N . o,
. S '
] S DISTRIBUTION STATEMENT A
. Approved for public release;
: t‘_—“ Distribution Unlimited R
y e » LS
) m ‘.: A RS
.’ u . ,*
\ —_— L
: (=) N
N ':-:‘.-_\J
3 86 10 14 005 &

. e

LY
a

'
A

.......... P I TR S L SRS

SSRGS

RN
-\

I S I
1‘.‘ N I-\Q\._. . ) «




Y AJOURW SRR NN IAN N AN NN P LA R Db AL AR AT .»'.'?.':'.'-'_?'.'J“.‘"?"-"J‘x-‘v‘}}r-(“

P
:.; ‘ &;’;
X 1. INTRODUCTION :&;
s In the earlier paper by the authors, Kotz and Shanbhag (1980) (to SE_:
o be referred to as KSh for brevity) presented a detailed discussion of ;:f
\ new approaches to univariate probability distributions. We concentrated f::z
2 on representations and characterizations of probability distribution :ﬁ._;!‘
. functions in terms of conditional expectations (specifically in terms of "-':('
-;: the expected remaining life function - e.r.1. function) and in terms of ..‘::
. hazard measures. e
.:j; In the course of our investigations, we succeeded in extending, T:o
.f‘ generalizing and simplifying a number of results dealing with e.r.1. :Z:
3' functions and hazard measures which have appeared in the literature of _:,':::;f
:j the last two decades. We also presented some convergence theorems which ’:"j
\ shed light on the structure of e.r.1. functions, hazard measures and ::::\
' distribution functions in both the continuous and discrete cases (but 31";
' not restricted to these cases only). “::Ij
g In many instance; of practical applications, requiring model build- \{E
i ing, there are indications of such results being of special potential :\,:
;:_j importance. o
T
' The present paper is structured along the lines of KSh (1980) but
.'f is an initial attempt towards studying more subtle and difficult prob- _‘4
, lems of multivariate distributions. In this paper, we shall attempt :S}.
to unify, extend, generalize and simplify results scattered in the S.\
2 literature related to structures of multivariate distributions (in s'..\
? particular but not exclusively ~f a non-absolutely continuous nature), g L\"‘
'; of various definitions of hazard measures (unlike the univariate case ,-,_L_:‘::
‘ there is no unique definition of this concept in the multivariate case &tow . gi‘:;
’ in the literature). Among other results, an over-compassing generali- — :_;
zation of the scalar multivariate hazard measure is given and an overall or :,__
” . cal AN
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structure as well as certain convexity properties and their implications

related to this measure are revealed. In addition, we define and inves- 3§{$ﬂ
?55”,

tigate multivariate analogues and extensions of e.r.l. functions and 3f§:4
730

trace their relations, first to the multivariate probability distribu- T
LY

tion functions and then to the corresponding univariate concept on the PR
- .'~‘.-:

one hand, as well as to (various generalizations of) multivariate hazard SRS
'.;l:i;f-'.

L ]

measures on the other. Following the approach adopted in KSh (1980) for

T
7}

the univariate case, we do not restrict ourselves necessarily to non- ﬁ{;ﬁ\-
TR

. . . LS.
negative random variables. (The notions of the hazard measure as well et
oAt
AR i

D

as that of the e.r.1. functions in the literature are usually limited
to the non-negative case.)
Most of the groundwork as far as the convergence and representation

theorems is concerned has been laid in KSh (1980). However, in the pre-

sent paper we clarify, using examples of specific distributions, some

ambiguities and certain inconsistencies related to the structure of SE_ -
various characteristics of multivariate distributions in our search for ;"3-a
the most meaningful and practically attractive expressions and repre- Eii;?
sentations of these distributions which would expose the hidden depen- :jilii
dencies among jointly distributed random variables. These findings could ii;i;
prove to be of some significance to future developments at least in areas ;iéziﬁ
such as reliability and pattern recognition. ;E;&Ei

’.\' .
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2. A GENERALIZED MULTIVARIATE HAZARD GRADIENT AND A .
MULTIVARIATE GENFRALIZATION OF THE e.r.1. FUNCTION e

y 1)
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In this section, we shall give, among other things, two theorems “y

Sl

LA

that follow as direct corollaries of KSh (1980). These concern respec-

e

tively a gener: lized multivariate hazard gradient and an analogous
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multivariate generalization of the e.r.1., function.

For multivariate distributions, there exist in the literature
basically two approaches to defining hazaru functions, both confined
predominantly to absolutely continuous distributions on Euclidean spaces.

The first definition, adopted and analyzed by, among others, Basu
(1971) and Puri and Rubin (1973), is a straightforward extension of the
univariate concept. (A purely discrete case was also considered by Puri
and Rubin (1973).) The hazard function of a random vector‘ﬁ = (X],...,Xp)
is defined in this case to be a real-valued function r on {5:'f(§) > 0}

with values

r(x) = f(f)/?(f),

~

where x = (x],...,xp) e RP, f(x) is the probability density function, and

F(x) is the survivor function given by

F(x) = P(X > x).

(Here as well as in what follows the inequalities for vectors are to be
understood componentwise.) This concept was further discussed by Block
(1977) where additional closely related variants were proposed, and
treated in a somewhat more unified manner in Galambos and Kotz (1978).
We intend to generalize this definition and examine it in greater detail.
However, since our contribution in this case is to be rather substantial
without relying very heavily on KSh (1980), we shall deal with it sepa-
rately in the next section (i.e., Section 3 of the paper).

The second approach, due to Johnson and Kotz (1975a) and Marshall

(1975), defines a multivariate hazard gradient (in an absolutely con-

tinuous case) as the vector-valued function h on {x: F(x) > 0} with values

-~

ﬁ(f) = (- 3%;,...,— 3%;)1cg ?<§)

-grad log F(x)
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(except for a set of Lebesgue measure zero). As was shown by Marshall

(1975) in the absolutely continuous case, the vector-valued h uniquely
determines the probability distribution function (d.f.) or equivalently
the survivor function. Note that each one of the components of h(x)
depends in general on all the variables Xi(i = 1,2,...,p). In the first
part of this section (i.e. in part a) we shall generalize the gradient
T to the case of arbitrary d.f.'s and at the same time reduce some re-
dundancy existing in the structure of the components of this gradient.
The main result involving a representation given in this part subsumes
Marshall's (1975) result and is essentially a corollary of Propositions
5 and 8 of KSh (1980).

In KSh (1980) - motivated by the remark contained in Shanbhag
(1970) and the results of Hamdan (1972), Kotlarski (1972), Shanbhag

and Bhaskara Rao (1975) and Gupta (1975) - we also extended the con-
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cept of the e.r.1. function of a positive random variable to an arbi-

’ e

trary random variable and have given a representation for a probability

-y

distribution in terms of this function. Some possibilities of the
applicability of the concept in practice have been indicated in KSh
(1980) and the references cited above. (Also, see Hall and Wellner
(1981), Hollander and Proschan (1984) and Gléhzel et al (1984) for
further information and references on the e.r.1. function.) A variety
of multivariate generalizations of this function can of course be con-
structed. However, we intend in this case to deal only with a certain
construction that has features closely resembling those of the multi-
variate hazard function of the present section. The representation
theorem in this latter case follows as a corollary of KSh (1980). In

view of the prevailing analogy, we shall devote the second part of this
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section (i.e, part b) to discussing this particular version of e.r.1.
functions and revealing some of its properties including the aformentioned
theorem. For a related but independently carried out investigation of
multivariate analogues of e.r.1. functions, the reader may wish to

consult Zahedi (1985). This work is however along different lines.

a. A generalized hazard gradient and some of its basic properties.

Let p > 2, F be a d.f. on RP and X = (X,,X,,..

o ) . (1) ; =
distributed according to this d.f. Let v ’( ‘f(i+])) with X(i) =

.,Xp) be a random vector

(Xi )X_i+~|:..

CaX ) x(1) = x denote the hazard measure on R1 for the

o) -

conditional distribution of Xi given that Xi+1 > xi+1""'xp > xp

) € RP™? and

(as stipulated in Section 4 of KSh (1980)) for every X(§4]

i=1,2,...,p-1. (We define the conditional distribution to be arbitrary

for any conditioning set of measure zero.) Also, let vép)(-) denote

the corresponding hazard measure on R] for the marginal distribution

of Xp. Extending and modifying the definition of Johnson and Kotz (1975a)

and Marshall (1975), we call the family

{Véi)("f(i+1))‘f(i+1) T R L “ép)(')

the hazard gradient relative to the d.f.F. We have the following theorem

which is essentially a corollary of Propositions 5 and 8 of KSh (1980)

(see, also, Cox (1972)):

THEOREM 1. The survivor function corresponding to F is represented by

F(x)

- ~ o~ :
1

"
o
—
>
u
>x
g
"
n =2
—~
—_—
=




................

F(x) = exp{-.g]véi)((-w,xillx(m))}, x € RP, (2.2)
~ ;s - \

where the notation vép)(-]x( )) is used for convenience to denote

p+1
vép)(.), e”" is defined to be zero, Di(x(i)) is the set of real points
(i) (c,i)(’

¥; < x; at which vp ({yi}lf(i+1)) is positive, and vp

X(i41)) the
continuous (non-atomic) part of véj)(-Ix(i+])). Furthermore, if F is
continuous and {Fn: n=1,2,..., } is a sequence of d.f.'s on Rp, then
using the same notation

(i) (i)
\’Fn ((' ,X]]l)f(_‘_'_-‘)) - VF ((' ax1]I§(]+])) (2.3)

for each x such that F(x) > 0 and i = 1,2,...,p if and only if {Fn}

converges to F.

Proof. (2.1) and, if F is continuous, (2.2) follow immediately from

-

R OOV R R ERAR, AN A R R Y R

e

Proposition 5 of KSn (1980) in view of the relation

DS Rl = NN ad ALN AL FLILAF

p-1
P(X > x) = P(X > xp)fl]P(X" 2 x4l X 2 x

’X s
b2 > X )

i+’ p = 7p
x ¢ RP, (2.4)

If F is continuous, then the marginal distribution function of Xp is
continuous and for every x such that F(x) > 0 and i = 1,2,...,p-1, the

conditional distribution of Xi given Xi+1 > X,

1+],...,Xp > xp is continuous.

Also, if X(") = (X%"),...,X(n)) for each n > 1 is a random vector dis-

p
? tributed according to F , then for each n > 1

- n

¢ -1 (n)

- (n) - pry(n) P (n) (n)

3 P(§ > f) = P(Xp 3_xp)1zlP(Xi 3_x1|Xi+] > xiﬂ,...,Xp > xp)’
¢

N « = RP (2.5)

ARl B
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Applying Proposition 8 of KSh (1980) to the survivor functions on the
r.h.s. of (2.5), it can be easily verified that the convergence part

of the theorem is valid.

Remark 1.,

For absolutely cont-nuous distfibutions, representation (2.2)
reduces to that of Marshall (1975). Both (2.2) and (2.1) are thus
extensions of Marshall's hazard gradient representation. moreover,
the general representation for purely discrete distributions follows

from (2.1) in the obvious manner.

Remark 2.

The "convergence" part of Theorem 1 fails to be valid if the
assumption of continuity of F is omitted. Examples 1-3 presented in
KSh (1980) following Proposition 8 in Section 4 are sufficient to

illustrate this situation.

Remark 3.

The hazard gradient obviously has other versions when the ordering
of the variables is altered. Under a specific situation, one may find
a particular version to be the most natural and easiest to handle. In
that case, we shall of course consider the corresponding ordering to be
the one implied in our Theorem 1, A similar remark applies to the result

of Theorem 2 below.

Remark 4,
The following observation related to univariate hazard measures
may be appropriate at this point. (See also the beginning of Section 4

of KSh (1980).) If G is a d.f. on R], then according to representation

. .t
° -.’_'&' \":s':‘\-"n':{t\.‘; '.':\‘ RN
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(4.1) in KSh (1980) either SR
K.
- = @ = o W
lepl1-vg({x, 1)) =0 or H (=) = =, RN
r A
where Vg is the hazard measure corresponding to G, D is the set of dis- :f:i:
N
A
continuities of VG and Hc(x) = Véc)((~m,xl), véc) being the continuous f”'\'
a8
part of Vg Whenever the right extremity of G is not one of its dis- giitf

continuity points, we have vG({xr}) < 1 for all X € D. Now the Borel ;3521
R
zero-one law and relation (16) given in Burrill (1972), p.245, imply Fs“’

that xﬁe D(]-vG({xr}) =0 if and only if ngeDvG({xr}) = = provided
vG({xr}) <1, X, € D. This leads us to the relation

vell-mye)) = ]

vel{x }) + H (=) = = (2.6)
xreD G r ¢ ‘

whenever the right extremity of G is not one of its discontinuity

points. (This result was obtained earlier by Shanbhag (1979) using

a somewhat different argument.) i;ﬁ g
S
N
Remark 5. b
:__\:_\ >
As a corollary of Theorem 1, it follows that the components of X NN
are independent if and only if there exists a version of the hazard :i\i:}
Lol
. (i) . AN
gradient of F such that Ve ( |f(i+1)) is independent of f(i+1) for h?{ d
S A
each i =1,2,...,p-1. The theorem also yields several other interesting :3:3:.
f-::‘-::\“
corollaries. In particular, since the theorem also implies that every :::f‘
Vahas
distribution on RP is characterized by its hazard gradient, one could Tk
obviously use it to give further characterizations of distributions, ii;-_
R
such as the Marshall-Olkin bivariate distribution or Frechet's multi- ﬂjzjxj
“UNLS
\-:-.'.— ~T
variate distribution with continuous marginals or a multivariate Pareto t;:r

distribution, for which the hazard gradients are of a particularly

appealing form.
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b. The generalized e.r.1. function and some relevant comments.
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In view of Proposition 3 of KSh (1980), (2.4) in the proof of %?{ﬁ

VAT

Theorem 1 above implies that under some mild assumptions there exists i:is

:':a':-

a representation for the survivor function of every p-component random e

vector X = (X],...,Xp) in terms of the conditional expectations ‘ilgi

K E{h (x )| P> Xiseuwosk > %X 3, (X.h.ou.3x ) € Rp'1+] of monotone trans- :i:
‘ 1 P - P 1 P Rty
' forms h., i =1,2,...,p. This is given by the following Theorem 2. o

The theorem yields, among other things, that if X is a random vector

with E{X?} < for all i = 1,2,...,p (where X: = max{O,Xi}), then the

"z Te v ¥ v Dy -

conditional expectations E{X.-x.[X. > XiseeasX > X }, i =1,2,...,p,

TERAINL %

1 p -
f( = (x],...,xp)) e RP (and hence E{§ f]f > x}, X € Rp) characterize the ig:é:
distribution of X; the representation in this latter case is also ob- i;ijs
vious now. Since the family of expectations {E{Xi'xilxi > xi,,,_,xp > Xp}: ,ifé}
i=1,2,...,p, X € RP} avoids some of the redundancies existing in the T

function E{Xex|X > x}, x € R and has all the obvious requirements of

AP P B A Sl PO FRi e B W Bp W2 o SRR I T ./ T L

an e.r.1. function, it would be reasonable to adopt it to be the e.r.1. T
function of a multivariate probability distribution on RP. iﬁ?jj
THEOREM 2. (A representation theorem). Llet X = (X],...,Xp) be a random E?;ﬁ;.
vector with p components and hi’ i=1,2,...,p be real-valued non-decreasing =~

functions on the real line such that E{h:(xi)} <o for all i =1,2,...,p Qﬁi

(where h:(xi) = max{o,hi(xi))). If hi’ i=1,2,...,p, are such that ;;;js
hi(xi) < E{hi(xi'lxi > i Xiyy 2 xi+1,...,Xp > xp} whenever P{X. > x., "

X WX o> xp} > 0, then the survivor function corresponding

i41 2 X410 %p

N T )

to X is given by

P ) ) :
p(X > X) = E G. X(i)), X( = (X.,...,Xp)) € R , (2. ) RS

AR S PLPPLCIE Y
]
|
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10
where X\i) = (x1,...,xp) g
5
* *
0 if x, > b, for b, < =
i i i
. G * * k
11m* 1(y1-,>~<”-+|)) 1f x5 = b; for by < = s
¥i*b;
and G;(x .y) =
i X.
) 14 9 (i (541 ( Vexpd 1dh1€C)(Z) ) ;
m = n g.{z x,, exp —J
TP N (e VHEEIER)
YaX. -
11 AR
if x, > b1., (2.8) i
' in which D)(/])x denotes the set of discontinuity points of h]. in :"-34'--13
it
[yi,hj), hgc) denotes the continuous part of h]. (i.e. of its right contin- ijt_i
i uous version), -
'. RN
' = - - S o
| 93 0x(iy) = Bt DTGy 2 xgiyd - ) S
] avs -.
‘ el
g*(z . ) {91( 91((14_])) = (h'l(z) - h_](Z-))} gi(z""!x(.“_])) ..:.
itTR(i41) 91(Z+”f(1+1))+ (h,(z+) - h,(2)) gi(Z.X(MQ ’
! (2.9)
) . t
t o if {y: lim E{hi(xi)l)f(i) > x(yy) exists and < h.(y)) is empty
X.ty
| i
: * '-.‘.'.‘..
' and b_I = RS
' RO AN
; ‘ inf{y: 1lim E{hi(xi)lx(i) > x(jy) exists and < h.(y)} otherwise Ry
! X.ty - - .:\ K
1 P
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(The conditional distributions are defined arbitrarily when the condi-

tioning sets are of measure zero; also (2.8) and (2.9) in the statement

above are to be read without X(i+1) in the case of i = p.)

Remark 6.
In view of Theorem 3 and the information given in the Remarks in
Section 3 of KSh (1980), it is possible to present several extensions

and variants of Theorem 2 given above.

Remark 7,

If hi's in Theorem 2 are assumed additionally to be continuous,
then the representation (2.7) with Gi's given by (2.8) without the term
{

*

' gi(z,x(i+]))} and with hgc)'s replaced by hi's is valid.

(i)
V3%

I
zeD
Remark 8.

If hi(i =1,2,...,p) of Theorem 2 are taken as strictly increasing,
the representation (2.7) for a survivor function is obviously valid in
the case of every distribution satisfying the integrability condition of
the theorem. One may be interested in seeing whether there exists a

representation for the survivor function for X in terms of the conditional

~

expectations corresponding to a fewer number of functions, which are
appealing in some sense, at least when the domains of the definition of
hi are taken as Euclidean spaces with hi(xi) considered above replaced

by hi(X(i)), X(i) being a subvector of X. However, it is not difficult

-~ ~

to see that in general merely with the integrability condition such a
representation does not exist. This could be verified by noting, for

example, that if hi’ i=1,2,...,p-1 are given to be real-valued Borel

e Tt R R T T W T T T e e e e A,
e e - - T e T A e e s T e T S
e e e et e e e T T T e




L O C T W, Lafabu el el Sah By 8o X ARt RAY 4 d AR CN VN LW U Y ' g AL AL o
: R
, 12 e
: T
i AIRD
: T
measurable functions on Rp, then there exist random vectors X and Y RS
. with distinct distributions having a common support (such as {(0,...,0), :ﬁij}'
v .
:\_\":t
(1,0,...,0), «..s (0,...,0,1)3) such that N
RSt
ECh; (X)X > x3 = Ethy (Y)[Y > x} for all x e RP and i = 1,2,...,p-1. ASANSS
t'.r:_a.
-.‘. \..
Remark 9, >
Prakasa Rao (1974) has essentially attempted to solve under some
d constraints the problem mentioned in Remark 8. He has given in this
context a uniqueness theorem in the bivariate case under certain assump-
tions. The following example shows that the theorem is not valid.
; 2
! EXAMPLE 1. Define h to be a real-valued function on R~ such that
-x2 ]
h(x,)’) = (]"e )E(Y)} X,y € R s
& where
c ify<]
> 3
C+(yé1) ifl<y<?2
3 .
. E(y) = c + (y-2) + ié%!l_. ifa<y<4d A
3 e
(y-5) . RIS
c+2+y6 ifd<y<)b ,\'u
SO
c+2 ify>5,
where ¢ is a positive number. Alternatively, one could consider the h
with a slightly more trivial situation of &€ = ¢ for ¢ # 0. Let (X,Y)

and (Z,W) be random vectors with absolutely continuous independent non- E;
negative components such that X and Z are identically distributed but %
the distributions of Y and W are not identical. Also assume the random .
vectors to be such that their marginal distributions have all left ex-
i tremities to be equal to zero and

P(Y <1) =P(W < 1), P(Y <y|]Y> 1) =P(W < y|W>1) forall y > 1.
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Observe that all the assumptions in Theorem 2.1 of Prakasa Raoc (1974)
are satisfied with Xg = ¥y = 0. Moreover (X,Y) and (Z,W) satisfy
Prakasa Rao's stipulation (2.0). However, in this case, the conclu-
sions of the theorem are not valid. (It is obviously possible to

illustrate this point by other examples of a similar nature.)

Remark 10.

In view of Theorem 2, characterizations based on e.r.1. functions
are now obvious for the well known distributions such as the Marshall-
Olkin bivariate distribution, the Farlie-Gumbel-Morgenstern distri-
bution discussed in Johnson and Kotz (1975b), Gumbel's bivariate ex-
ponential distribution, the multivariate Pareto distribution and several
other multivariate distributions appearing in Johnson and Kotz (1972).
One could also apply the theorem to arrive at further characterizations
based on conditional expectations for distributions such as Frechet's
and those discussed by Krishnaiah (1977). The following example may

serve as an illustration of this point.

EXAMPLE 2. (Fréchet's bivariate continuous distribution).

2

Consider F to be the continuous d.f. on R" such that the corres-

ponding survivor function is given by

?(x],xz) = min{]-F1(x]), 1-F2(x2)}, (x],xz) € R2

with F and F2 as univariate d.f.'s. Clearly, since F is assumed to
be continuous, we require F] and F2 to be continuous here also. Define

h.(x.) = (F.(x.)) ', x; € R, i=1,2,

where 0 < a; < and fixed. Then it follows that if X = (X1,X2) is a

1l

random vector with d.f. F, we have for every x(=(xi,x2)) € R2 and i
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(-(a(x))  11-6(x)y" if 6(x) < 1

1 if 6(x) =1,
where G(f) = max{Fl(x]), Fz(xz)}. (On the set {G(f) = 1}, one could
also define E{hi(Xi)|§ > f} differently.) Obviously, given a; and F.,
{E(h](X])lX] 2 Xys X5 2 x2), E(hz(XZ)IX2 > x2): (x],xz) = RZ} character-
izes the distribution considered above among all bivariate distributions
which have the right extremities of the marginals lying in {left extr. F1,
right extr. F,] and (left extr. Fys right extr. F,] respectively. (This
distribution has several other interesting characterization properties

also, the recent characterization based on discretized Shannon entropy

given in Bertoluzza and Forte (1985) being one of these.)

3. EXTENDED VERSIONS OF THE RESULTS OF BASU AND PURI
AND RUBIN DEALING WITH THE HAZARD FUNCTION

We shall now discuss a rather substantial generalization of what
is known in the literature as the "scalar" multivariate hazard function.
Let, as in the previous section, F be a d.f. on Rp, X be a p-component
random vector with this distribution and F be the corresponding survivor
function. Denote by PF the measure determined by F on (the Borel o-field
Bp of) Rp. Since, in the multivariate case, we can have an F such that
PF{§: F(x) =0} > 0, (e.g., if we take F to be continuous such that

-~

PF{§(=(x],...,xn)): X, = —x2} = 1, we obtain PF{f: F(x) = 0} =1),

-~

the definition of a hazard measure in KSh (1980) is not extendable as
it stands. However, if we restrict ourselves only to the set € (say)

of distributions F for which F(+) > 0 almost surely (P the definition

i
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e in KSh (1980) of a hazard measure admits an obvious extension. Suppose e
= -
. then that F € € and define Ve to be the scalar hazard measure on RP }ﬁiJ
~ AR
~ given by Z;:j;
< .:j::::‘
¢/ ] e
ve(B) =! —L_ar.(x) forali B e B . (3.1)

A B F(x) \ P | ST
A -
s RO
7 The integral on the r.h.s. of the equation can be written following A
o ’..n{ .
- the accepted convention in the literature as [ :%~; dF(x). S
. B F(x -

o 42 *
P

In the case when F is an absolutely continuous d.f. with respect

% to the Lebesque measure on Rp, Ve also possesses this property and thus
_; the Ré:don-Nikodym derivative becomes the hazard function, studied by

2 earlier authors, a;e. on {x: F(x) > 0}. It follows from the investiga-
Ef tions of Basu (1971) and Puri and Rubin (1973) (see also, Galambos and
%: Kotz (1978)) that the measure Ve does not in general determine uniquely
'5 the distribution F. Consider then P_ to be the set of d.f.'s on R

) that are members of C having the same scalar hazard measure as F. Clear-
i ly the set DF defined herein is convex although not necessarily closed
'ES relative to weak convergence.

&) Consider now the set of all d.f.'s on the compactified Euclid-

2? ean space [-m,w]p. There exists a normed linear space of which this

5: is a compact subset and the corresponding relative metric is a metric
~ of weak convergence. Then, as a further subset of this compact

% set, the c1osure'§F of the set DF is also compact. (For simplicity

:a we abuse the notation slightly here and elsewhere in this section by

denoting the set of all d.f.'s on [~m,m]p which are extensions of

members of DF also by DF.) Since §F is also convex, Choquet's theorem
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- (cf. Phelps (1965) page 19 and also Kendall (1963)) implies that each Y
* : -
b F € pF can be represented as the centroid or barycenter of a probability gigi
\: : --'<~:‘,
toe measure on the Borel o-field of the linear space which is concentrated on the I:ﬁij
-~ .
. set of extreme points of BF‘ In general, the problem of obtaining the .
ﬁq extreme points of 6F or merely of.pF seems to be a difficult one and
'i we have not as yet obtained any positive information in this connection. .
- However, through a theorem and two corollaries to follow, we shall OO
provide some valuable information concerning the problem of characteriz- ;E?E
. ing F on the basis of Ve This gives, among other things, the Poisson- E:fl
J': :-\.—;
) Martin rerrcsentation for F in terms of Vi when F is continuous and a f?*B
:5 more natural extension of the univariate hazard measure to the multi- e
i: variate case than the hazard gradient of the Tast section, possessing l;
;: the uniqueness and stability requirements. ﬁfﬁ:
|
Before discussing our main results of this section, the following : N
:: instructive examples making some specific points are worth revealing. S
. EXAMPLE 3. Let .
Sl BN
e F(x) = m F.(x.), x = (x,5...,x_) € R, T
o - R R i p e
L i=]
\ where Fi are continuous d.f.'s on R]. Then, appealing to the result JORN
3 arand
N of Puri and Rubin (1973) or our observation above concerning a repre- ::;3
N Y
N sentation for the members of‘ﬁF, we can easily see that each member ;2:}
.v:, ‘\n\.':
. * . AN
F e DF has the following form: r g
- A
- * p A-i p .':'_\:'
e P = [ ra-0eR ) e, x e R (3.2) NG
N : p i=1 - o
) R o
ﬁ; where G is a d.f. on RP such that the corresponding measure is concen- f;f{
X

...............................................
................................
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L trated on the set {i: A]. >0, 1 =1,2,...,p, .I?] >1 = 1}. Also, this .’E
3 can be seen via the Poisson-Martin integral r;;resentation given for .i:i.;.-q
:’, the members of ‘DF in Corollary 1 below. Incidentally, in the present ::::i_\_ﬁ:
case, the extreme points of vF are given precisely by the d.f.'s F* of :";_'
. the form ; . ';;{_.;{3
'- F(x) = o1 - Flxy) 'y, x ¢ RP :::
: I o
9 p - v
with )\1. > 0,1 =1,2,...,p and 'n >‘i = 1 and any extreme point of ’F —d
" is either an extreme point of D;‘(])r a d.f. on [-m,w]p which is the :
_. weak 1imit of a sequence of extreme points of DF' Looking at an arbi- ;
trary member F* given by (3.2) in the case of p > 2 for Dp» we observe V\'i
. a curious property of DF that if F* € DF and any p-1 of the p univariate EEE?LS:
. marginals of F* agree with those corresponding to F, then l~* =F, In E_‘.E::S
) other words, we have in this case that if a d.f. on RP has p-1 of its g‘::i
univariate marginals precisely the same as those corresponding to F and .:
_.* its scalar hazard measure on RP is defined and is given by Vs then ;~£‘_:‘:
. this d.f. has to be F. Since every univariate d.f. is uniquely determin- r:;
ed by its hazard measure, ve could alsoc restate this property utilizing E\"Ej
f:? only hazard measures. (For some recent advances connected with the re- E\_.::E
w >
: sults discussed herein, see Lau and Rao (1982), Rao and Shanbhag (1984) gvj
: and Davies and Shanbhag (1984).)
EXAMPLE 4. Let p > 2, k be a real number and S be a countable subset r"’;
of RP 1. Also let G denote the set of d.f."'s on RP™! that are concentrated f-
" on S giving a positive probability mass to each point of S. For each E
- G e G, let FG denote a d.f. on RP such that it is concentrated on 3’*\-‘
{x: x e RP, § x; = k} with \r
- 1 ‘.\_:-_:'_E::

oo \'_‘.'- e

e e
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®) = p-
FG(X1""’Xp-1’ ) G(x],...,x ]), (x],...,xp_]) € R

(in the usual notation). It is easily seen that here v_ are all (well

F

defined and) identical. If we now consider p > 4 and any of the Fo's
*

to be F, then it is clearly seen that the condition that F e DF does

* *
not imply F = F even if it is given that F has all of its univariate

marginals or bivariate marginals to be the same as those of F. However,
* T
for the F in this example, the condition that F e 9. together with Tatata

F*(X X w) = F(x w), (x X_ 1) € Rp-]
'I’---’ p--], = ],...,Xp_-', ’ ],.--,

p-1

*
implies that F = F. Note also that here we have the set of extreme

points of OF to be empty and the set of extreme points of 7F to be the ‘ ER{,;
closure (relative to weak convergence) of the set of the degenerate Ei{gﬁi
d.f.'s on [-=,~]P that are concentrated on {x: x e RP, :xi = k}; clearly .2323’
here the situation of the last example that each F* € 0% has an integral i?i:_
representation in terms of the extreme points of o is not valid. g? ,-
In spite of certain isolated cases, such as that of Fréchet's dis- Eésfié
tribution of Example 2 or of a d.f. F that satisfies for some E e RP Efifif
the conditions F(P) =1 and ?(P) = PF({b}) > 0, in which the F is char- ‘{ilé
acterized by Vs it now follows that, in general, unless at least one of lgﬁik
the (p-1)-variate marginals of the distribution (or something equivalent ig;;t;
to it) is given, \Jt does not characterize F. One might then be interested ?ié;;i
to know whether F is characterized by Ve given any one of the (p-1)-variate Eifé;;
marginals. Our attempt to answer this question has been only partially e
RS
successful so far and the findings of this investigation are presented, ﬁ;ﬂzi;‘
among other things, in the following results, géié%:
We are now ready to give our main theorem of the section together ;::;"j
with the two of its interesting corollaries. (The reader can find some ;;gfi
analogy between the proof of the theorem given here and Seneta's (1984) ;éﬁ{i&
-

L - . et et e - e - gy e .- e et . . PN J e
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proof of the Poisson-Martin integral representation theorem for a super

regular vector corresponding to a non-negative matrix.)

»*
THEOREM 3. If F e DF and, for each i = 1,2,...,p, we have (in the

standard notation)

*
F (x],...,xi_],w, xi+],...,xp) = F(x],...,xi_],w, xi+1,...,xp)

for all X, € R], i=1,2,...,i-1,i+1,...,p, (3.3)

* * -—
then F = F, Furthermore, given an F e Ur’ there exists a probability

measure u* on the set of all d.f.'s, G on [-w,w]p, such that

*

F (x j 6(x)du"(6), x € [-=,=)°, (3.4)
P X

*
where pu (K) = 1 and K is the closure (relative weak convergence) of the

set of the d.f.'s Kt(-) for t such that F(t), F(t) > 0 (F being the sur-
vivor function of F as in the last section), where each of the Kt(-) is
defined to be a d.f. on [-m,m]p such that it is the degenerate dtf. at

tif PF({t}) = F(t) and the d.f. satisfying the following otherwise:

k(x,t)
Kt(f) i (-=,t) (3.5)

-~ o~

Ty

1]

~

with

kly,t) = a.(y) + n{ dvely )ooodvp(yy), y € [==st],

- J('T’Y]J[¥1’f]'.. J[Yn-1’f] "

At(-) being the d.f. degenerate at t. (The proof of the theorem asserts

that Kt(-) is well defined.)

-~

Proof. In view of Fubini's Theorem and elation PF(B) = J ?(x)dvF(x)
B
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S

dvF(f])...dv (x ), n>1, (3.7)

where the sequence {gm(t): m=0,1,...}(for each given t) is such that

*
s L]
it depends only on Ve and d.f.'s F (x],...,xi_],w,xi+],...,xp),

p-1 . _ -
(x],...,xi_],xi+1,...,xp) € R" ", i=1,...,p. It follows trivially
from (3.6) that the multiple integral on the r.h.s. of (3.7) tends to
zero and n > », This in turn implies that the sequence {gn(t): n=1,2,...1}
_*
in (3.7) converges to F (t) and hence we have that if (3.3) is valid,

then

*

F (t) = F(t) for each t such that F(t) > PF({t}). (3.8)

~

— .
In view of the left continuity of F and F and the fact that {x: x € Rp,

-~ ~

*

F(x) =0} = {x: x e RP, F (x) = 0}, we can conclude that if (3.8) is
% —_ *

valid, then we have F = F or equivalently F = F, This establishes the

first part of the theorem,

To establish the second part of the theorem, define

B = {t: teRP, F(t), F(t) > 0},
-1y, P £ _
B, - {f' teR, F(f) = PF({E}) > 0},
-— - T .I =
and By = (t: teB, F(t) > P(it}) +0b, m=1,2,... .

*
IfF € DF’ then by the monotone convergence theorem, we get

*

() [[ ity
4 X5

-~ -~

~ o~

i fB R, (x)PLy() + Vim JB L0 (e (D), xerP.  (3.9)

o~

-
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Now, for every m > 1 and t € B_, a, of (3.6) is bounded by m/(m+1)

t
and hence it follows from (3.6) that k{t,t) is bounded on Bm for each

m> 1. Also, if we define k(x,t) = k(},t) - k(x-,t) for each t € B N Bg
and x € RP (with this to be zero if x ¢ (==,t]). Fubini's Theorem
implies that for each m > 1 and x e\Rp

J R(x,tIF (£)dv (1)
5 CEIF

-~

<[ BT e« | LERLNCROIENOR (3.10)

where Bm(t) =[t,=) N Bm. Observe that (3.10) follows easily from the

-~

relations:

Rlxot) = Tdx) + 1 [ ] ey,
T t- nz1 XX,y 1 x,y,] P Fee

= c
F (t)dvF(t) = PF*(B (y.)), Y, €BN B,y mn > 1.

mn

From (3.9) and (3.10), it consequently follows that there exists a

sequence {um: m=1,2,...} of measures on rP such that um(Rp) <1 for

all m and

F(x) = lim J Rix,t)dy (1), x ¢ R, (3.11)
B -~

Mmoo ~ - ~
which in turn implies that {um(B)] converges to 1 and hence that there
exists a sequence {um} of probability measures on RP for which (3.11) is

valid. Since K is compact, using Parthasarathy's (1967) Theorem 6.4,

......

AU
LA

7’
N
I




|
'
’
[
’
4
i

Te e E "

s N

P 2t B ]

P |

AR I

SET R

W ORATINS

PRERAH EBRRRA Pt B SLNCE L

[NCRC

3

*
it can then be easily seen that there exists a probability measure u

on K such that

F(x) = JKE(f)du*(G), x e RP.

Since ﬁF is the closure of DF’ a further application of Parthasarathy's

Theorem yields the validity of the second part of our theorem.

The following two corollaries of Theorem 3 are easy to prove:

COROLLARY 1. (The Poisson-Martin representation): If F is continuous,
*
then we have a d.f. F on RP to be a member of OF if and only if it has

a representation

£ (x) [ JSae x e RP,
D e X

for some probability measure u on K N DF. (In the present case, we also

have K N DF to be a G(S set of the space of all d.f.'s on [-m,w]p,)

COROLLARY 2, The hazard measure Ve jointly with the hazard measures
relative to all the univariate and multivariate marginals of F determines

F uniquely. (This corollary can be verified by induction,)

Remark 11,

It can be noted that the result of Corollary 1 does not remain valid
if the assumption that F is continuous is dropped. Also, in view of what
we have observed, it can he concluded that if F is continuous, then we
have the set of extreme points of OF to be a nonempty subset of K and
each F* € oF to be the barycenter of a probability measure that

is carried by the set of extreme points of t}.
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Remark 12.

The finite collection of hazard measures given in Corollary 2
appears, in spite of the restriction that F € ¢, to be a more natural
multivariate analog of the univariate hazard measure than the hazard
gradient of the last section. A stability theorem for the collection

is valid when F is continuous, as is shown by Corollary 3 of the next

section,

4, A STABILITY THEOREM

We conclude the paper by proving and commenting in this section on
a general stability theorem for probability measures on metric spaces,
which yields, among other things, the two stability propositions in
KSh (1980) as simple corollaries. The proof of thé present theorem uses
Prohorov's (1956) and related theorems in Billingsley (1968) dealing
with the convergence of probability measures. It might be instructive
to compare this with the proofs of earlier stability propositions in KSh
(1980). The techniques used for proving the theorem here are indeed of
a more global nature than those which are sufficient in the case of
probability measures on the real line.

Now, let S be a metric space, T an index set, $ the Borel o-field
on S, P, Py P,s Py families of probability measures on (5,8), Uﬂt: teT)
a family of collections of sets with ‘t < § for every t € T, and

fh(.

t,At,P): At € At, PeP, teT}a family of real-valued Borel
measurable functions on (S,8) satisfying the following conditions in
which the notation D(t,At,P) stands for the set of discontinuity points
of h('[t,At,P).
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(i) P,» P,» P3c P, also p, is closed (under weak convergence),

Gy (D e () )

1 2P TPy, e P1 and {P£] : n > 1} converges weakly
(

*
to P ¢ P = nl.

*
t’At’Pn1)) + h(e t,At,P ) as n— o uniformly almost

* *
surely [P ] on A 1 Dc(t,At,P ) and

sup Eél){[h(- t,At,p£1))11Atﬂ{lh(_ e ] 5 ar? 70
as o - » for each t € T and P*-continuity set At tht with P*(At) positive,
(ii1) sz), sz) € ?2 and are distinct = there exist t € T and At €A,
such that P§2)(At)’ Péz)(At) are both positive, At is both PSZ)-continuity

(2)

set and P2 -continuity set and

P 2
and

(iv) P(3) € P3 = D(t,At,P(3)) has zero P(3)-measure for every t in T
and P(3)-continuity set At in At.
Further, let P € P and {Pn: n > 1} be a sequence of members of P]
such that {Pn: n=1,2,...} is relatively compact. Then we have the

following stability theorem:
THEOREM 4, (a) The condition that

PeP,, (P :n>1) converges weakly to P (4.7)

implies that

Epn{h(-lt,At,Pn)[At} = Ep{h(-lt,At,P)lAt} (4.2)
as n > » for every t € T and P-continuity set At 6 At with P(At) > 0.
Moreover, (b) if additionally P, P1, Pry o € P2 and the set of cluster

points of {Pn: n=1,2,...} (relative to weak convergence) is a subset

-V e,V .
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of P3, then the converse assertion is valid.

Proof. Assume first that (4.1) is valid. Since P ¢ P3, it is obvious

that the set of discontinuity points of h(.

t,A, ,P)I, has zero P-measure
t Ay

for every t € T and P-continuity set At € At. Now, let t € T and P-

continuity set A, € A be arbitrarily fixed. Since P '€ Pisn > 1, the

requirements of Billingsley's (1968) Theorem 5.5 are clearly met with

h(-[t,At,P)I as h and h(-

A, t,At,Pn)IAt as hn. This theorem implies
that {Pnh;1, n=1,2,...} converges weakly to Ph'. 1f we now consider
Xn’ n > 1 and X to be some random variables having distributions Pnh;],
n > 1 and Ph°] respectively, we have {Xn: n=1,2,...} converging to X

in distribution. Also, the fact that P € P, n > 1 implies that

{Xn: n=1,2,...} considered here is uniformly integrabie. Since

Billingsley's (1968) Theorem 5.4 yields that E{Xn} + E{X} as n » = in -

such a situation, we can conclude that

Ep (h(-ft,AL,P )1, 3> Epth(s

t,A,,P)I, } as n » =, (4.3)
n t t A

t

In view of the assumptions that {Pn} converges weakly to P and At is a

P-continuity set, it follows that Pn(A ) > P(At) as n » o, If P(At) >0,

t

we have (4.2) then as an obvious consequence of (4.,3). Hence we have the

first part of the stability theorem to be valid.

P
‘,(}'}Zzl'llﬁ; "

To establish that the second part of the theorem holds, assume that -
e
P, Py Poy ... € P, and the set of cluster points of (P _:n = 1,2,...) A
1’72 2 n NN
i
is a subset of P3 and also that (4.2) is valid. Since each cluster point :{:I:q
N
N

of {Pn: n=1,2,...} is an element f P3 and {Pn: n=1,2,...1 is rela-

’ ‘.’
. i A
Ly

4 "
«
v, .-. |
(ST NN

tively compact, we should have a subsequence {Pn cr=1,2,...7 of j})
r RN
{Pn: n=1,2,...} converging weakly to Q € P3 with Q # P unless (4.1) is ﬁ;;;:
-
. . . . . . - . ~ - - . . . ..\-.
A A




7 g
2 ,
AT
* ey
valid. If Q denotes the (weak) limit of a subsequence of {Pn], ST
* I
then clearly we have Q € ‘P3 and hence the first part of the theorem and :-;.ji"_
RASAY)
the validity of (4.2) lead us to pRe
ALY
. RN
Ep{h(-lt,At,P)lAt} = E *{h(-lt,At,Q )lAt} (4.4) L
Q - | e
: ~--
: for every t € T and At € At such that At is a P-continuity set with -'_~Z—‘_-';;:
: * * BRI
P(At) > 0 as well as a Q -continuity set with Q (At) > 0. We have assumed ety
‘ that P € P, and for each n > 1, P_ ¢ P, and also we have P, to be closed. els
N 2 - n 2 2 ,ﬁ.,-_._:‘
.. * * S
N In that case, we have P,Q € ‘P2 and hence, in view of (4.4), Q =P. It -‘:E:.:"
N ety
- is therefore impossible that (4.1) will not be valid, Hence we have the ;:‘f-?
P A
second part of the theorem. RS
,: :.’_\‘:;.
b Remark 13.
' In the case of h(-|t,A,,P) being independent of P, obviously the L; R
LS SA
. * N
. part of condition (ii) that h(. t’At’Pr(mn) -> h(-lt,At,P ) uniformly :j:"_
. . SR
. * * %* u".q 4y
2 almost surely [P ] on Atﬂ Dc(t,At,P } for every t € T and P -continuity :E::{:;
* -
set A with P (At) > 0 is trivially met. Also, if h(-It,At,P) are all Fovoe
~ PR AR
continuous, then the condition (iv) above is obviously satisfied with —:S;'E.'-_'
.r:".-.'
P3 = P, IfS is a Polish space or in particular, if it is a Euclidean :..:-;?,:j
» space, we have a sequence {Pn: n=1,2,...} of members of P to be
. relatively compact if and only if it is tight in the sense of Billingsley E'..;Z:E‘:-Z:
a \":
: (1968: p.37) (cf. Theorems 6.1 and 6.2 in Billingsley (1968)). Thus, it N
is evident that in various specialized situations, the theorem given g‘._ A
above has simplified and perhaps more appealing versions. AN
N
Remark 14. 'n'
d"..\:-
L If the stipulation "the set of cluster points of {P : n = 1,2,004} R
v f\'\.:
is a subset of P." is replaced by the weaker stipulation "the set of oY
3 1‘\-’ Ll
LAY
PN
[ 53
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cluster points of the range of {Pn: n=1,2,...} is a subset of P3",
Theorem 4 still remains valid provided we also replace "the converse
assertion is valid" by "(4.2) implies that {Pn: n=1,2,...} converges

weakly to P",

Remark 15.

To illustrate that the stability theorem just proved does not remain
valid if the assumptions P € P3 and the set of cluster points of
{Pn: n=1,2,...} is a subset of P3 respectively appearing in the two
parts of the theorem are omitted, it is sufficient to consider the

following example:

EXAMPLE 5. Let {x :n = 1,2,...) be a sequence of strictly increasing,
real numbers converging to a real number x'. Let x'' be a real number
greater than x', Define P, P', {Pn: n=1,2,...} to be a sequence of

probability measures on the Borel o-field of R] such that for some

0<a<1
a if x ex
Pn({x}) = n
1 -a ifx=x"",
p({x})___ O.'ifx=X'
1 -a ifx=x"'",
and
RRLL I
P'({x}) =
1 -a “(?'c) ifx=x''",

where ¢ and d are given real numbers such that ¢ < d and {a(d-c)/(x''-x")}
<1 -a. Also, define h on R such that
¢ if x < x'

hix) =
d + (x=x") if x> x'",
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If we take T = the singleton {1}, A] = {(~o,x): - @< x <x''}, ;:E:
P = {P,P',Py,P,,...} and h(°)|,A,P*) = h(+) for every member A of A, i;;
and P e P, then it follows that P itself satisfies the requirement E;S
of P] and P2 mentioned above. However, in this case we cannot have 525
a nonempty subset 93 of P satisfying the condition (iv) as required. izﬁ
Consequently, it follows that in this example neither the requirement Ei;%
of P e P3 nor the requirement of the set of cluster points of iiji
{Pn: n=1,2,...} being a subset of P3 are met. Observe that here izfi
{Pn: n=1,2,...} converges to P weakly, P # P' and (4.2) is not valid gséi
(since EP {h(-)|A} # Ep{h(-)(A} whenever A = (-=,x) with x < x') but ;;ﬁ}
(4.2) with p replaced by P' is valid. This implies that with the de- 3l
Jetions mentioned above neither the first part of the theorem nor the i;i;
second part remains valid. Eg;:
Theorem 4 has several interesting corollaries. In particular it . EE:E
yirlds that if a characteristic property exists, based on conditional EE;E
expectations of the type Ep{h('lt)lAt} for probability measures P within 3‘3'-.:5
a certain class, then, under certain mild conditions, one can produce gﬁ;
a stability version of the property. It is easily seen that Proposi- égé
g

tion 4 of KSh (1980) is an obvious corollary of Theorem 4 and also it
is not difficult now to state a stability version of our Theorem 2 of

Section 2 based on Theorem 4. (Note that in view of what was revealed

T T T S S Y N
RN I
AR

| P R S
et et e,

s A
P IR

in Remark 13, the statement of Theorem 4 simplifies under the situation

4
%
\

in Theorem 2.) It is also worth pointing out in passing that (in view

SN
s (.‘u'. 77,

of Proposition 5 of KSh (1980)) the "only if" part of Proﬁosition B of

{I.‘

B
-

KSh (1980) follows as a corollary of the first part of Theorem 4 by

letting S = RV, T = (-,b), A, = {R'} for every t € (-=,b), P = P, = the

Sy

)

r o '.~"'
+%S

Vs
<

set of measures in the seguence

A

’
FY

A

R R L SN

- - ‘& et “n Te 7w g eyt )T e . . . . Y L R . A
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X ::f g
-' N
!'J:,‘
(P,=)p, = (P} %
{PF tn>0, FO = F}» 2" P3 F Bty
n * t.v-..x‘
~ and for each t in T and P in P e
b ‘.'\._'.'
A * _] . -1'.‘.-'\4
y (P llxu=))" L, g 3F PULIXG=)) > 0 NN
" * AN
h(Xlt,At,P ) = :_:1;5.
N 0 otherwise; ’;: _:4
. e
N e
N moreover, if some simple a priori observations are made and P, ?], P2 ot
* and P3 are appropriately redefined, the "if" part of Proposition 8 of A
., KSh (1980) follows from the second part of Theorem 4. Essentially the i;’.;fzf
‘ same argument leads to the following stability version of the charac-
Ll :_J o
terization resuit in our Corollary 2 of Section 3. This result clearly o
“ " m-A
: subsumes Proposition 8 of KSh (1980). \‘{
COROLLARY 3. Let p > 1and {F : n =1,2,...} be a sequence of d.f.'s L
@ on rRP and F be a continuous d.f. on RP. Assume that F and for each n, f-.a-
Y
. F, are members of the set C defined in the last section. Then R
) Ny
. Fn()f) - F(>~<) for all X € rRP :?,-::-:
3
" if and only if el
* * . _ e
o Ve (x) - vF(x) for all x with F(x) > 0,
: n - - - - e
* T
where the notation VGQ() stands for the vector whose elements {given e
-~ RN
N in some specified order) are vG((-w,x]) and its counterparts relative MY
: T SR
N to all the univariate and multivariate marginals of G, with appropriate L_::;
“ KNS
) subvectors in place of x and appropriate number of components in =, P
2 - - R
: and F stands for the survivor function corresponding to F as in the ::::::
o ‘.-\_n‘
5 earlier sections. :_';:j;
' e
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